Dali Sames

Associate Professor of Chemistry

Columbia University

In the Sames Group, we use organic synthesis and molecular design to address exciting problems in neuroscience and brain medicine. The main theme in our research group is to develop new methods for both the imaging and repair of synapses in the brain. We use the entire spectrum of molecular space (small organic molecules, proteins, polymers, nanomaterials), develop in vitro and in vivo assays, and partner with neurobiologists, neuropharmacologists, and clinicians to take on a range of projects.

Synaptic Imaging

We have developed a new class of imaging agents (in collaboration with Prof. David Sulzer, Departments of Psychiatry, Neurology and Pharmacology) termed “Fluorescent False Neurotransmitters” (FFNs) that act as fluorescent tracers of neurotransmitters. FFNs provide the first means for optical imaging (via multiphoton microscopy) of neurotransmitter release at discreet presynaptic terminals in the brain. We are developing both ex vivo and in vivo imaging methods in rodents, and study the synaptic release properties of our imaging agents in both normal and pathological states. We are also interested in using FFNs and other imaging probes to provide the ability to study the effects of pharmacological agents on synaptic activity. This work spans a wide range of approaches including organic synthesis, molecular design, viral delivery of sensors, optogenetics, and in vivo microscopy. We are developing a number of experimental platforms for discovery and development of novel imaging probes. We aim to develop chemical imaging agents and biomarker probes that may enable imaging in different modalities (e.g., optical, PET) and that may also be applicable to humans.

For representative examples see:

Personal Website